The effect of water immersion during exercise on cerebral blood flow.
نویسندگان
چکیده
INTRODUCTION Regular exercise induces recurrent increases in cerebrovascular perfusion. In peripheral arteries, such episodic increases in perfusion are responsible for improvement in arterial function and health. We examined the hypothesis that exercise during immersion augments cerebral blood flow velocity compared with intensity-matched land-based exercise. METHODS Fifteen normotensive participants were recruited (26 ± 4 yr, 24.3 ± 1.9 kg·m). We continuously assessed mean arterial blood pressure, HR, stroke volume, oxygen consumption, and blood flow velocities through the middle and posterior cerebral arteries before, during, and after 20-min bouts of water- and land-based stepping exercise of matched intensity. The order in which the exercise conditions were performed was randomized between subjects. Water-based exercise was performed in 30°C water to the level of the right atrium. RESULTS The water- and land-based exercise bouts were closely matched for oxygen consumption (13.3 mL·kg·min (95% confidence interval (CI), 12.2-14.6) vs 13.5 mL·kg·min (95% CI, 12.1-14.8), P = 0.89) and HR (95 bpm (95% CI, 90-101) vs 96 bpm (95% CI, 91-102), P = 0.65). Compared with land-based exercise, water-based exercise induced an increase in middle cerebral artery blood flow velocity (74 cm·s (95% CI, 66-81) vs 67 cm·s (95% CI, 60-74) P < 0.001), posterior cerebral artery blood flow velocity (47 cm·s (95% CI, 40-53) vs 43 cm·s (95% CI, 37-49), P < 0.001), mean arterial blood pressure (106 mm Hg (95% CI, 100-111) vs 101 mm Hg (95% CI, 95-106), P < 0.001), and partial pressure of expired CO2 (P ≤ 0.001). CONCLUSIONS Our findings suggest that water-based exercise augments cerebral blood flow, relative to land-based exercise of similar intensity, in healthy humans.
منابع مشابه
The Effect of Hurdling Performance on The Adaptive Profile of Cerebral Blood Flow in Vestibular Irritation
Background: The reactions of the whole organism that occur under the action of accelerations of rectilinear and rotational motion are factors that have a systemic effect on the cerebral blood flow. The use of hurdling performance in the structure of human physical activity can have a significant impact on the tone of the brain vessels, their elasticity and venous outflow in the development of f...
متن کاملFacial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans.
The diving response is initiated by apnea and facial immersion in cold water and includes, besides bradycardia, peripheral vasoconstriction, while cerebral perfusion may be enhanced. This study evaluated whether facial immersion in 10 degrees C water has an independent influence on cerebral perfusion evaluated as the middle cerebral artery mean flow velocity (MCA V(mean)) during exercise in nin...
متن کاملCardiovascular responses to water immersion in humans: impact on cerebral perfusion.
Episodic increases in cerebrovascular perfusion and shear stress may have beneficial impacts on endothelial function that improve brain health. We hypothesized that water immersion to the level of the right atrium in humans would increase cerebral perfusion. We continuously measured, in 9 young (means ± SD, 24.6 ± 2.0 yr) healthy men, systemic hemodynamic variables along with blood flows in the...
متن کاملThe Effect of Water Immersion and Transcranial Direct Current Stimulation (TDCS) during Recovery Period on Changes in Blood Lactate and Subsequent Performance of Swimmers
The present study was aimed to determine the effect of cold-water immersion and (TDCS) during the recovery period on blood lactate changes in and subsequent performance of professional male swimmers. For this purpose, 20 male participated in this study in two days with an interval of 48 hours. The two-hundred meter breaststroke was performed every day and then the subjects participated in one o...
متن کاملEffects of Cold Water Immersion on Muscle Oxygenation During Repeated Bouts of Fatiguing Exercise
Postexercise cold water immersion has been advocated to athletes as a means of accelerating recovery and improving performance. Given the effects of cold water immersion on blood flow, evaluating in vivo changes in tissue oxygenation during cold water immersion may help further our understanding of this recovery modality. This study aimed to investigate the effects of cold water immersion on mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medicine and science in sports and exercise
دوره 47 2 شماره
صفحات -
تاریخ انتشار 2015